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1. Introduction

Theories of spontaneous F-term supersymmetry breaking generically have a global U(1)R
symmetry [1, 2]. The argument of [2] ties spontaneous supersymmetry breaking with

the existence of an exact R-symmetry. This argument can easily be extended to tie the

existence of an approximate R-symmetry with metastable supersymmetry breaking.

More explicitly, a theory with an approximate R-symmetry has a small parameter ǫ,

such that for ǫ = 0 the theory has an R-symmetry, but for nonzero ǫ this symmetry is

broken. Following [2], for ǫ = 0 the theory breaks supersymmetry. We assume that, as

in all known examples, this happens in a compact space of vacua. Now we turn on a

small but nonzero ǫ. Clearly, the small effects of nonzero ǫ cannot ruin the supersymmetry

breaking ground states. All they can do is slightly deform the expectation values in these

states. However, because the theory with nonzero ǫ does not have an R-symmetry, it

follows from [2] that it must have supersymmetric ground states. For small nonzero ǫ,

these supersymmetric ground states are at field expectation values of order an inverse

power of ǫ. Therefore, we conclude that for nonzero but small ǫ supersymmetry is broken

in a metastable state. The longevity of this state is guaranteed for small ǫ because then the

supersymmetric vacua are very far in field space and the tunneling to them is suppressed.

For a recent review of such models and for an extensive list of references, see [3].

Now, let us turn to very basic phenomenological constraints. In order to have nonzero

Majorana gaugino masses, the R-symmetry should be broken. This breaking can be either

explicit, or spontaneous, or both explicit and spontaneous.

One possibility is that the theory has an exact U(1)R symmetry which is spontaneously

broken at the scale of supersymmetry breaking; this occurs, for example, in the (3, 2)
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model [1]. This option leads to a massless Goldstone boson — an R-axion — in the

spectrum, which is experimentally ruled out. This R-axion can acquire a mass if the R-

symmetry is explicitly broken. Indeed, in any theory of gravity we expect that there are

no global continuous symmetries; therefore high dimension operators, whose coefficients

are O(1/Mp), will explicitly break the symmetry. A specific example of such an operator

arises from the constant term in the superpotential which is needed in order to set the

cosmological constant to zero (or a very small value) [4]. Depending on the details of the

scales of supersymmetry and R-symmetry breaking, this contribution to the R-axion mass

might or might not be sufficient to be compatible with the various experimental constraints.

Here, we will not consider scenarios where the U(1)R symmetry breaking is entirely

due to gravity. If we decouple gravity, then we must include explicit R-breaking terms

in the field theory. Then, the argument above shows that the supersymmetry breaking

ground state must be metastable. We conclude that, with some mild assumptions, low

energy supersymmetry breaking requires that we live in a metastable state! This general

observation is consistent with the fact that all known realistic models of supersymmetry

breaking which do not involve gravity (starting with the seminal work of [5]) lead to a

metastable state. We see that this fact is not just an embarrassing nuisance, which perhaps

can be avoided with more ingenious model building — instead, metastability is inevitable.

Accepting metastability, even in the supersymmetry breaking sector of the theory, is

helpful because it makes it much easier to construct models, as seen e.g. in [6]. In fact,

the recent work of [7] suggests that metastable supersymmetry breaking is generic in field

theory and string theory. Variants, and other models with metastable vacua have been

presented, e.g. in [8 – 14] .

In this paper, we illustrate these and other issues using toy models of both explicit

and spontaneous R-symmetry breaking. Our examples are all based on variants of the

O’Raifeartaigh model, which is the simplest example of renormalizable spontaneous F-term

supersymmetry breaking. Recall that the original model [15] has three chiral superfields,

X, φ1, and φ2, with canonical Kähler potential K = Kcan = XX + φ1φ1 + φ2φ2, and

superpotential

WO′R =
1

2
hXφ2

1 + mφ1φ2 + fX. (1.1)

This theory has a U(1)R symmetry, with R(X) = R(φ2) = 2 and R(φ1) = 0. It

has a classical pseudo-moduli space of supersymmetry breaking vacua, with arbitrary 〈X〉.
At one-loop, this degeneracy is lifted [16], and the vacuum is at the origin of the pseudo-

moduli space, with supersymmetry broken, and the U(1)R symmetry unbroken. On general

grounds [2], adding a generic, R-symmetry breaking operator

δW = ǫf(φ1, φ2,X) (1.2)

to the superpotential (1.1) will restore supersymmetry. However, if the coefficient ǫ of

that operator is small, we expect the local analysis of the supersymmetry-breaking vacuum

to be unaffected. Moreover, we expect the lifetime of the now metastable vacuum to be

parametrically large in the small ǫ limit. In our first example, we illustrate this general
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connection between approximate R-symmetry and metastable supersymmetry breaking by

taking δW = 1
2ǫφ2

2 and analyzing the resulting vacuum structure in detail.1

For our second example, we will analyze a class of toy models for spontaneous R-

symmetry breaking, also based on O’Raifeartaigh models. Because the pseudo-moduli X

of the tree-level theory have R(X) = 2, the R-symmetry will be spontaneously broken if the

quantum effective potential for the pseudo-moduli has a minimum away from the origin,

〈X〉 6= 0. To achieve this, we generalize (1.1) to include a symmetry G. For simplicity,

we will focus on G = SO(N), with the fields φi in the fundamental representation. (The

qualitative features of our analysis should carry over easily to other groups and represen-

tations.) Weakly gauging G can lead to a vacuum with 〈X〉 6= 0, provided that X couples

to the gauge group, and the gauge group is spontaneously broken.2

The fact that a generalized O’Rafeartaigh model, augmented with a gauge symme-

try G, can lead to 〈X〉 6= 0 has been known for decades [18]. In the original example

of [18], the idea was to use gauge interactions to generate an “inverted hierarchy” with 〈X〉
exponentially larger than the scales in the tree-level potential. In this limit, the leading

contribution to the effective potential for the pseudo-modulus X is related to its anomalous

dimension:

Veff(X) ≈ γ log

( |X|2
M2

cutoff

)
V0 for X large, (1.3)

where V0 is the tree-level vacuum energy along the pseudo-moduli space. When several

fields have non-zero F-terms on the pseudo-moduli space, γ is the anomalous dimension of

a particular linear combination of them, as we will illustrate later in examples. In general,

γ is a combination of the gauge and Yukawa couplings, given at one loop by

γ(1) = chh2 − cgg
2 (1.4)

with ch and cg positive numbers. If the pseudo-modulus is charged under the gauge group,

then cg 6= 0 and there is a negative contribution to the one-loop anomalous dimension

coming from the gauge interactions. If the ratio g/h is sufficiently large, γ is negative, and

the potential slopes down at large X. This is the situation considered in [18]. Whether

X is stabilized at a finite value, as opposed to having a runaway X → ∞, hinges on the

higher loop contributions to (1.3). This was analyzed e.g. in [19 – 21], where it was found

that g/h needs to be sufficiently large to have γ < 0, but not too large in order to avoid

runaway. In this phase, the spontaneous R-symmetry breaking occurs at a scale 〈X〉 which

is exponentially larger than the supersymmetry breaking scale.

Motivated by an interest in low-scale gauge mediation, we will focus the analysis of

our models on a different phase of the theory, where γ is positive, yet 〈X〉 is stabilized at

small, but nonzero values. The existence of such a “non-hierarchical” phase depends on

the details of the full Coleman-Weinberg effective potential,

V
(1)
eff =

1

64π2
STrM4 log

M2

M2
cutoff

. (1.5)

1A similar toy model was considered in [8].
2It is also possible to spontaneously break R-symmetry in O’Raifeartaigh models without gauge inter-

actions [17]. This interesting scenario will not be considered here.

– 3 –



J
H
E
P
0
7
(
2
0
0
7
)
0
1
7

(where M are the classical, pseudo-moduli-dependent masses), and thus it is not at all

guaranteed. As a result, this non-hierarchical phase has not been much discussed in the

literature. (It was considered long ago in an early model building attempt [22], and it was

also discussed recently in [9, 14].) Here we will present a broad class of examples of this

phenomenon, and attempt the first systematic analysis of it.

More specifically, we will show that in our gauged SO(N) models, the potential can

have a minimum at small or intermediate 〈X〉 6= 0, but only if the ratio g/h takes values

in a small window which is typically of size . 0.1. On general grounds, such a window,

if it exists at all, cannot be too large, since for sufficiently large g/h the theory is in the

inverted hierarchy phase (or has runaway), while for small g/h the Yukawa interactions

dominate and the U(1)R remains unbroken.

In addition, we will generalize our models to include the case where only an SO(n)

subgroup of SO(N) is gauged. Now the phase structure is more intricate, and depending

on the couplings the symmetry group SO(n)× SO(N −n) can either be broken to SO(n−
1)× SO(N − n) or SO(n)× SO(N − n− 1) along the pseudo-moduli space.3 In the former

case, the potential depends on g and there can be a minimum with 〈X〉 6= 0, while in the

latter case the potential is independent of g and the minimum is at 〈X〉 = 0. The reason

is because, as mentioned above, the gauge group must be spontaneously broken along the

pseudo-moduli space in order for the potential (1.5) to lead to 〈X〉 6= 0. This can be seen

from the standard expressions for the classical mass matrices M, which enter in (1.5).

Because we consider situations without D-term supersymmetry breaking, the masses M
only depend on the gauge coupling g if the gauge group is Higgsed. If the gauge group is

not Higgsed, then the potential (1.5) coincides with that for g = 0, and then the minimum

of the potential is at 〈X〉 = 0.

The outline of the paper is as follows. In section 2, we collect some general facts

and formulas about O’Raifeartaigh-type models. We focus on two different sub-classes of

O’Raifeartaigh-type models. The first consists of straightforward generalizations of (1.1),

while the second class consists of models with only cubic and linear superpotential inter-

actions. The models of [18] and [7] belong in this second class. Section 2 will also set

up the formalism that we will need for the examples studied in later sections. In section

3, we analyze the effects of adding a small R-symmetry breaking operator to the origi-

nal O’Raifeartaigh model (1.1). Finally, section 4 contains our analysis of spontaneous

R-symmetry breaking in the gauged SO(N) and SO(n) ⊂ SO(N) O’Raifeartaigh models.

2. General Remarks on O’Raifeartaigh models

In this section, we review some aspects of O’Raifeartaigh-type models. A large class of

such models has r fields Xi, and s fields φj , with r > s, with a U(1)R symmetry under

3The question of dynamical vacuum alignment [23, 24] does not arise in this setup, because there are

relevant interactions, which have no reason to respect the SO(N) symmetry. In particular, the couplings

in the superpotential will only respect the SO(n)× SO(N − n) symmetry. The symmetry breaking pattern

in the vacuum is then determined by the tree-level values of the superpotential couplings, rather than

dynamically.
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which R(Xi) = 2 and R(φj) = 0. We take these fields to have canonical Kähler potential,

and superpotential

W =

r∑

i=1

Xigi(φj). (2.1)

For generic functions gi, it is impossible for all −F †
Xi

= gi(φj) to vanish, so supersymmetry

is generically broken.

The tree-level potential for the scalars is

Vtree =

r∑

i=1

∣∣∣gi(φj)
∣∣∣
2
+

s∑

j=1

∣∣∣
r∑

i=1

Xi
∂

∂φj
gi(φj)

∣∣∣
2
. (2.2)

There is a pseudo-moduli space of vacua, given by the r fields Xi, subject to the s conditions

0 =
r∑

i=1

Xi
∂

∂φj
gi(φj) for all j = 1 . . . s. (2.3)

For generic functions gi(φj), this pseudo-moduli space has complex dimension equal to

r− s. The Xi equations of motion are automatically satisfied on this pseudo-moduli space.

The φj are determined by their equations of motion,

0 =
r∑

i=1

gi(φj)
∂

∂φj
gi(φj) for all j = 1 . . . s, (2.4)

which is generally satisfied for a discrete set of values φj = φ
(n)
j , some of which are local

minima of the potential (others are saddle points). Whether or not a given solution φj =

φ
(n)
j is a local minimum can vary with the parameters in the gi(φj).

To summarize, the tree-level potential generally has a pseudo-moduli space of super-

symmetry breaking vacua, labeled by the r − s complex dimensional space of expectation

values of the Xi, subject to (2.3), along with some discrete choices φ
(n)
j of the solutions

of (2.4). The pseudo-moduli are lifted at one loop, by the potential (1.5). The resulting

vacua, in all these examples, always have 〈Xi〉 = 0 as the minimum of the one-loop po-

tential. The U(1)R symmetry is thus not spontaneously (nor explicitly) broken in these

examples.

In the remainder of this section, we will discuss some particular examples in detail.

Some of these examples have non-R global symmetries, which can be spontaneously broken.

The results will be useful in the later sections, where we discuss modifications, with broken

U(1)R symmetry.

2.1 The basic O’Raifeartaigh model OR1

Let us consider the simplest case, r = 2, s = 1 in (2.1). Taking g1(φ) = 1
2hφ2 + f and

g2(φ) = mφ gives, with a change of notation φ1 = φ and φ2 = X2,

W(O′R)1 =
1

2
hXφ2

1 + mφ1φ2 + fX. (2.5)
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In addition to the U(1)R symmetry, there is a Z2 symmetry, under which φ1 and φ2

are odd. Note that this model (2.5) has two dimensionful parameters, m and f . They can

be made naturally small if they are generated by dimensional transmutation of some added

dynamics, e.g. as in [8].

The tree-level scalar potential is given by

Vtree =
∣∣∣
1

2
hφ2

1 + f
∣∣∣
2
+

∣∣∣hXφ1 + mφ2

∣∣∣
2
+

∣∣∣mφ1

∣∣∣
2
. (2.6)

There is an r − s = 1 complex dimensional pseudo-moduli space of vacua, with X and

φ2 constrained by the single condition (2.3), which here gives hXφ1 + mφ2 = 0. The φ1

equation of motion (2.4) leads to two phases, depending on the value of

y ≡
∣∣∣∣
hf

m2

∣∣∣∣ (2.7)

with a second order phase transition at y = 1. Let us now describe these phases in turn:

1. In the y < 1 phase, the potential is minimized along a pseudo-moduli space of

supersymmetry breaking vacua, given by

φ1 = φ2 = 0, X arbitrary. (2.8)

The Z2 symmetry is unbroken in this phase. The classical pseudo-moduli space

degeneracy is lifted at one-loop by the Coleman-Weinberg potential (1.5). Near

X = 0, the potential is

V
(1)
eff (X) = V0 + m2

X |X|2 + O(|X|4), (2.9)

where V0 is a constant and

m2
X =

1

32π2

∣∣h2m2
∣∣ f1(y) (2.10)

f1(y) ≡ y−1
(
(1 + y)2 log(1 + y) − (1 − y)2 log(1 − y) − 2y

)

Higher loop corrections are suppressed by powers of h2. Since f1(y) is positive for all

y < 1, the potential (2.9) has an U(1)R-preserving minimum at X = 0.

2. In the y > 1 phase, there are two disjoint pseudo-moduli spaces given by

φ2 = −hX

m
φ1, φ1 = ±i

√
2f

h
(1 − y−1), X arbitrary. (2.11)

The Z2 symmetry is spontaneously broken in this phase. The Coleman-Weinberg

potential again takes the form (2.9), now with

m2
X =

1

8π2

∣∣h2m2
∣∣ f2(y) (2.12)

f2(y) ≡ y2 log y − (y − 1)2 log(y − 1) − (y − 1/2) (2 log (y − 1/2) + 1)

Again, since f2(y) > 0 for all y > 1, the one-loop effective potential is minimized at

X = 0, and the U(1)R remains unbroken.
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2.2 A “cubic only” model, OR2

Consider again (2.1) for r = 2, s = 1, now with g1(φ) = 1
2h1φ

2 + f and g2 = 1
2h2φ

2. For

convenience, we will write it again as

WOR2
=

1

2
h1Xφ2

1 +
1

2
h2φ2φ

2
1 + fX. (2.13)

While (1.1) had two dimensionful parameters, the model (2.13) only has one, f . The

tree-level scalar potential is

Vtree =
∣∣∣
1

2
h1φ

2
1 + f

∣∣∣
2
+

∣∣∣h1Xφ1 + h2φ2φ1

∣∣∣
2
+

∣∣∣
1

2
h2φ

2
1

∣∣∣
2
. (2.14)

The potential (2.14) has a one-dimensional pseudo-moduli space of vacua, with supersmme-

try broken by the non-zero vacuum energy Vmin 6= 0. But the spectrum of massive fields is

supersymmetric, and thus the loop corrections to the potential, such as (1.5), vanish. The

reason is that there is a unitary change of variables, which preserves the Kähler potential,

of the form, (
Y1

Y2

)
= U

(
X

φ2

)
, (2.15)

with U ∈ U(2), which can be used to take (2.13) into

WOR2
→ 1

2
hY1(φ

2
1 + f1) + f2Y2. (2.16)

The theory thus decouples into two independent sectors. The first has two supersym-

metric vacua, at Y1 = 0, φ1 = ±i
√

f1. Supersymmetry is broken because of the decoupled

Y2 field, but that sector is a free field theory. So the model OR2 is rather trivial.

2.3 Generalizations of OR1, with fields φ1 and φ2 in representations of a group

A generalization of (1.1), which we will use later, is to replace the fields φ1 and φ2 with

representations r1 and r2 of some global symmetry group G. We keep X as a single field, in

the singlet representation of G. We take the superpotential to still be given by (1.1), with

the parameters h, m, and f in the singlet representation G. We choose the representations

r1 and r2 such that

r1 ⊗ r1 ⊇ 1, r1 ⊗ r2 ⊇ 1, (2.17)

so that the superpotential (1.1) is G-invariant. (Note that r1 and r2 can in general be

reducible representations.) In the notation of (2.1), we have r = 1 + |r2| and s = |r1|.
For simplicity, let us consider the case r1 = r2 ≡ r, which is taken to be an |r|

dimensional (real) representation of G. The analysis is nearly identical to that of section

2.1. There are again two phases, depending on the value of the parameter y defined in (2.7).

1. When y < 1, the the absolute minimum of the tree-level potential occurs at

φ1 = φ2 = 0, X arbitrary (2.18)

with V0 = |FX |2 = |f |2. The global symmetry G is thus unbroken in this phase.

The tree-level mass matrices factorize into |r| copies of the basic O’Raifeartaigh
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model (1.1), so the one-loop potential is just |r| times that of the basic model (1.1),

V
(1)
eff (X; r) = |r|V (1)

eff (X). In particular, near the origin, it is of the form (2.9) with

m2
X =

|r|h2m2

32π2
f1(y) (2.19)

2. When y > 1 the analog of the vacua (2.11) is

φ2 = −hX

m
φ1, (φ2

1)1 = −2f

h
(1 − y−1), φ†

1 = −
√

f∗h

fh∗
φ1, X arbitrary, (2.20)

where (φ2
1)1 means the singlet component in (2.17). The value of the potential is

V0 = |FX |2 + |Fφ2
|2, with |FX |2 = y−2|f |2 and |Fφ2

|2 = 2y−2(y − 1)|f |2. Note that

unlike in the y < 1 phase, for fixed X the solution to (2.20) is not unique or even

discrete — that is to say, there can be an additional (compact) component to the

pseudo-moduli space of vacua parameterized by φ1 satisfying the second and third

equations in (2.20). For simplicity, and since this is all we will need for the rest of the

paper, we will limit our discussion to the special class of models where the solution

to the φ1 equations in (2.20) is unique up to global symmetries. In that case, the

global symmetry G is spontaneously broken in this phase, by 〈φ1〉 6= 0, to a subgroup

H ⊂ G. The scale of the G → H symmetry breaking varies along the pseudo-moduli

space, increasing with |X|, because of the φ2 expectation value in (2.20). Note that

there is no value of X for which G is unbroken because φ1 never vanishes.

The pseudo-moduli space is lifted at one loop, but there is, in the full quantum

theory, a compact moduli space of vacua, the Goldstone boson manifold G/H, of

real dimension |G/H|. Decomposing r into H representations, it contains |r|−|G/H|
singlets. Thus, the classical mass spectrum of the φ1 and φ2 fields coincides with that

of |r| − |G/H| decoupled copies of the basic O’Raifeartaigh model with y > 1, and

|G/H| copies of the basic O’Raifeartaigh model with y = 1 (these supply the needed

massless Goldstone bosons). So the one-loop potential (1.5) is

V
(1)
eff (X; r, y > 1) = (|r| − |G/H|)V (1)

eff (X; y > 1) + |G/H|V (1)
eff (X; y = 1). (2.21)

In particular, the minimum is at X = 0, around which the potential takes the

form (2.9) with

m2
X =

h2m2

8π2

(
(|r| − |G/H|)f2(y) +

1

2
|G/H|(log 4 − 1)

)
. (2.22)

We stress that this analysis only applies to the special class of models where φ1 is

completely specified up to global symmetries by the equations (2.20).

In section 4, we will reconsider these models, with the symmetry G (or a subgroup)

replaced with a gauge, rather than global, symmetry. In the y < 1 phase, G remains

unbroken, so the 1-loop potential is unaffected by the gauging and the U(1)R symmetry
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remains unbroken. (It is amusing to note that, even if U(1)R were to be spontaneously

broken, the messenger mass matrix M in all of these models satisfies detM = const [17],

and so the gauginos would remain massless to leading order in the SUSY breaking.) On

the other hand, in the y > 1 phase G is broken, so here the 1-loop potential is affected by

the gauging and can have a minimum away from the origin.

2.4 Generalizations of OR2, with fields φ1 and φ2 representations of a group

We noted in section 2.2 that the model with superpotential (2.13) was rather trivial, because

it decoupled into a supersymmetric sector and a free field theory. We now consider general-

izing the model, with the same superpotential (2.13), by making φ1 and φ2 representations

r1 and r2 of a global symmetry group G. Again, we keep X as a singlet representation

of G. The couplings h1, h2, and f are singlets of G, and the superpotential (2.13) is G

invariant if the representations satisfy

r1 ⊗ r1 ⊇ 1 ⊕ r2. (2.23)

When r2 6= 1, there is no longer a unitary change of variables generalizing (2.15), to bring

the theory to a decoupled form analogous to (2.16). So this modified theory is nontrivial.

These models are a particular example of the general class of models (2.1), with r =

1 + |r2| and s = |r1|. If the superpotentials were generic, and unrestricted by the G

symmetry, we would then have that supersymmetry is broken if r > s, i.e. if |r2| ≥ |r1|,
and unbroken otherwise. Let us consider this in more detail, accounting for the particular,

G symmetric, form of the superpotential. The tree-level potential is

Vtree =
∣∣∣
1

2
h1(φ

2
1)1 + f

∣∣∣
2
+

∣∣∣h1Xφ1 + h2(φ2φ1)r1

∣∣∣
2
+

∣∣∣
1

2
h2(φ

2
1)r2

∣∣∣
2
, (2.24)

where (φ2
1)1 and (φ2

1)r2 are the singlet and the r2 representations in (2.23), respectively.

We can always choose the X and φ2 expectation values such that the middle term in (2.24)

vanishes,

h1Xφ1 + h2(φ2φ1)r1 = 0. (2.25)

This is |r1| conditions on the 1 + |r2| fields X and φ2, so (2.25) is satisfied on a

(pseudo)moduli space of superficial dimension |r2| + 1 − |r1| (the actual dimension can

differ from that). These models will break supersymmetry iff there is no simultaneous

solution to

(φ2
1)1 6= 0, (φ2

1)r2 = 0. (2.26)

Whether or not there are supersymmetric vacua, where (2.26) can be satisfied, depends

on the representations r1 and r2.

The X and φ2 equations of motion are satisfied on the space (2.25). The φ1 equations

of motion are cubic, and one solution is always 〈φ1〉 = 0. However, this is always a saddle

point of the potential, as seen by expanding (2.24) to quadratic order around φ1 = 0, and

noting that there is a tachyonic mode, where the first term in (2.24) can be reduced without

affecting the other terms. The minima of the potential are given by the non-zero solutions,

φ1 = φ0
1 6= 0. Expanding around such a solution, the symmetry G is broken to some
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subgroup H. This subgroup will in general depend on φ0
1; in particular, it will be enhanced

at special values of φ0
1. It is generally the case that the points of enhanced unbroken

symmetry are extrema of the effective potential, and in many (if not all) examples, the

point of maximal unbroken global symmetry is a local minimum.

Let us consider some examples. Take G = SU(N) and let r1 and r2 be the adjoint

representation. This is a model considered in [18] (with G = SU(5) gauged, and identified

with the GUT gauge group). In this case, there is no solution of (2.26), so supersymmetry

is broken. Another example is G = SU(Nf ) × SU(N), with r1 = (Nf ,N) ⊕ (Nf ,N) and

r2 = (N2

f
−1,1). This example is the supersymmetry breaking model analyzed in [7], with

φ1 = ϕ ⊕ ϕ̃, φ2 = Φ − 1
Nf

Tr Φ, and X = Tr Φ. This model breaks supersymmetry if

Nf > N , and in this model, the general condition (2.26) is the “rank condition” of [7].

To summarize, in this class of “cubic only” models, there is a pseudo-moduli space

given by the solutions to (2.25) and to the φ1 equations of motion. Along this pseudo-

moduli space, the global symmetry G is always spontaneously broken by φ1 = φ0
1 6= 0

to some subgroup H, for all values of the parameters in the superpotential. Therefore,

regardless of where the effective potential is minimized on this pseudo-moduli space, there

is always a compact moduli space of vacua, a Goldstone boson manifold G/H. This should

be contrasted with the OR1 class of models discussed in the previous subsection, where

the symmetry breaking phase depended on the parameter y = hf/m2.

3. Metastable SUSY breaking in a modified O’Raifeartaigh model

In section 2, we saw that for all values of the couplings, the vacuum of the basic

O’Raifeartaigh model occured at 〈X〉 = 0, where U(1)R is unbroken. Let us now con-

sider what happens when a small, explicit R-symmetry breaking operator is added to the

superpotential (1.1). Generically, the presence of such an operator introduces SUSY vacua

elsewhere in field space, rendering the SUSY-breaking vacuum metastable. However, as

long as the coupling is small, these vacua will be well separated and the SUSY-breaking

vacuum parametrically long-lived.

To be concrete, let us consider the superpotential

W =
1

2
hXφ2

1 + mφ1φ2 + fX +
1

2
ǫmφ2

2 (3.1)

with |ǫ| ≪ 1. The classical scalar potential is now

Vtree =
∣∣∣
1

2
hφ2

1 + f
∣∣∣
2
+

∣∣∣hXφ1 + mφ2

∣∣∣
2
+

∣∣∣mφ1 + ǫmφ2

∣∣∣
2
. (3.2)

There are two supersymmetric vacua, at

〈φ1〉susy = ±
√

−2f/h, 〈φ2〉susy = ∓1

ǫ

√
−2f/h, 〈X〉susy =

m

hǫ
. (3.3)

For small ǫ, the supersymmetric vacua (3.3) have X far from the origin. As ǫ → 0,

these supersymmetric vacua are pushed to infinity.
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In addition to these supersymmetric vacua, the scalar potential (3.2) is approximately

minimized along the pseudo-moduli spaces of the two phases. For y < 1, the pseudo-moduli

space of the ǫ = 0 theory (2.8) remains an extremum of the potential of the ǫ 6= 0 theory.

The classical masses of the fermionic and scalar components of φ1 and φ2 around (2.8) are

given by

m2
0 =

1

2

(
|hX|2 + |m|2(2 + |ǫ|2) + η|hf |

±
√

(|hX|2 + |m|2(2 + |ǫ|2) + η|hf |)2 − 4m2(|hXǫ − m|2 + η|hf |(1 + |ǫ|2))
)

m2
1/2 = m2

0|f=0 (3.4)

where η = ±1. In order for the pseudo-moduli space of supersymmetry breaking vacua

to be locally stable, without tachyonic modes, the eigenvalues (3.4) must all be positive.

There are indeed no tachyonic modes for a range of the pseudo-modulus X:

∣∣∣∣1 − ǫhX

m

∣∣∣∣
2

>
(
1 + |ǫ|2

)
y (3.5)

Outside of the range (3.5), there is one tachyonic mode in (3.4), and the pseudo-moduli

space is there locally unstable, as there the fields can roll down the tachyonic direction to

the supersymmetric vacua (3.3). In the region where (3.5) is satisfied, the pesudomoduli

space is locally stable. Note that this region includes a large neighborhood of the origin

X = 0 for all

y < 1/(1 + |ǫ|2). (3.6)

The classical pseudo-moduli space degeneracy is lifted by the 1-loop effective poten-

tial, which we compute using (1.5), with the masses (3.4). We restrict our attention to

the range (3.5) and (3.6), where the pseudo-moduli space is locally stable. The effective

potential Veff(X) thus computed is found to have a minimum near the origin. In particular,

expanding near the origin, the result is

V
(1)
CW = V0 + m2

X |X − Xmin|2 + O(ǫ2, |X − Xmin|4) (3.7)

To order ǫ, the local minimum is moved from the origin to

Xmin = −ǫm

h

(1 + y) log(1 + y) − (1 − y) log(1 − y) − 2y

(1 + y)2 log(1 + y) − (1 − y)2 log(1 − y) − 2y
+ O(ǫ3). (3.8)

This is a metastable vacuum, with supersymmetry broken. The light spectrum in this

vacuum consists of the massless Goldstone fermion, ψX . All other modes have O(ǫ0)

masses. In particular, the pseudo-modulus X has mass mX as in (2.11), and there is no

light (pseudo) Goldstone boson “R-axion.”

For y > 1, the pseudo-moduli space of the ǫ = 0 theory (2.11) is no longer an exact

extremum of the potential; instead, there is an O(ǫ) tadpole for X. However, we expect that

for ǫ ≪ h, this tadpole will be stabilized by a positive m2
X at one-loop, approximately (2.13)

to leading order in ǫ. To make this more precise, let us integrate out φ1 and φ2 exactly at
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tree-level. Their mass-squareds are complicated functions of h, X, m, f and ǫ, analogous

to (3.4). Curiously, they are positive as long as the reverse of (3.5) is satisfied:

∣∣∣∣1 − ǫhX

m

∣∣∣∣
2

<
(
1 + |ǫ|2

)
y (3.9)

For y > 1, this inequality always includes a neighborhood around X = 0. Integrating

out φi, we obtain an effective potential for X, which is an expansion in powers of ǫX, ǫX∗:

Veff = −m3ǫ(y − 1)

32π2h
(X + X∗) + O(ǫ2X2, ǫ2(X∗)2, ǫ2|X|2) (3.10)

Adding to this the one-loop potential (2.9)(2.13), we see that there is indeed a local

minimum at

Xmin =
ǫm(y − 1)

h3f2(y)
(1 + O(h2)) (3.11)

Here the O(h2) corrections include not only the corrections to m2
X , but also the O(ǫh)

tadpole term that is expected to appear in the one-loop Coleman-Weinberg potential, due

to the explicitly broken R-symmetry.

Finally, let us consider the lifetime of these metastable SUSY-breaking vacua. For

ǫ ≪ 1, the metastable vacuum (3.8)(3.11) is widely separated from the supersymmetric

vacua (3.3) by an O(1/ǫ) distance in field space. This ensures that the supersymmetry

breaking vacuum is parametrically long lived as ǫ → 0. In particular, the bounce action

scales as Sbounce ∼ ǫ−α for some α > 0, and can be made arbitrary large for ǫ sufficiently

small.

4. Spontaneous U(1)R breaking in a gauged SO(N) model

Having analyzed a toy model with explicit U(1)R breaking, we now turn to a model with

spontaneous U(1)R breaking. As described in the introduction, this can be achieved by

gauging a global symmetry G in an O’Raifeartaigh type model. If G is spontaneously

broken along the pseudo-moduli space, then for appropriate values of the parameters, the

pseudo-modulus can get a negative mass-squared around the origin.

Specifically, the models we will consider in this section are those of section 2.3, with

G = SO(N) and the fields φ1,2 transforming in the fundamental representation.4 Thus,

our superpotential is given by

W =
1

2
hX~φ2

1 + m~φ1 · ~φ2 + fX (4.1)

For N = 2 this model was studied recently in [9]. For simplicity, we will take all the

couplings to be real and positive throughout this section, which can be always be done via

field phase rotations. In section 2.3, we saw that without gauging the global symmetry, the

model always has a U(1)R preserving vacuum at X = 0. Now let us analyze what happens

4For N = 6, in the y → ∞ limit, this model reduces to the IR description of the ITTY model [25, 26].
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with we gauge the full SO(N) global symmetry. This introduces D-terms into the scalar

potential, VD = 1
2g2(D(ab))2 where

D(ab) = φ†
1T

(ab)φ1 + φ†
2T

(ab)φ2 (4.2)

and T (ab) are the generators of SO(N),

T (ab)
cd = δa

c δb
d − δa

dδb
c (4.3)

with 1 ≤ a < b ≤ N . Substituting (2.18) and (2.20) into (4.2), we see that the D-terms

vanish identically along the pseudo-moduli spaces of both the y < 1 and the y > 1 phases.

Therefore, (2.18), (2.20) remain the absolute minima of the tree-level scalar potential in

their respective phases, even after gauging the SO(N).

In the y < 1 phase, the SO(N) symmetry is unbroken, so the one-loop effective po-

tential is independent of g as discussed in the introduction. Thus the one-loop effective

potential is still given by (2.19), with an R-preserving minimum at X = 0.

In the y > 1 phase, however, the SO(N) symmetry is spontaneously broken, so now

the potential depends on g. At small |X|, we have instead of (2.22)

V
(1)
CW = const. +

h2m2

16π2

(
(N − 1)f3(η) + 2f2(y)

)
|X|2 + O(|X|4) (4.4)

where

f3(η) =
1

1 + 2η2

(
6η4(1 + 2 η2) log 2η2 + 2(1 + η4 + 2η6) log(2 + 2η2)

−2(1 + 2η2)(1 + 4η4) log(1 + 2η2) − (1 − 2η2)
2
)

(4.5)

and we have defined

η =
g

h

√
2(y − 1) (4.6)

Now since f2(y) is bounded and positive for y > 1, while f3(η) is positive at η = 0 but

is unbounded from below as η → ∞, we see that there must exist some ηmin(y) such that

when

η > ηmin(y) (4.7)

the pseudo-modulus is tachyonic at |X| = 0.

Although we have shown that for η > ηmin, the R-preserving vacuum at the origin is

destabilized, it remains to be seen whether there is a vacuum for any |X| 6= 0, or whether

the potential simply runs away to infinity. At large X, the potential (1.5) has the behavior

V
(1)
CW ∝ h2

(
N − 4(N − 1)η2

)
log

|X|
Mcutoff

+ O(|X|−1). (4.8)

This also follows from (1.3). The tree-level vacuum energy density is V0 = |FX |2 + |Fφ2
|2,

with |FX |2 = y−2|f |2 and |Fφ2
|2 = 2y−2(y − 1)|f |2. The renormalization of these terms

leads to (1.3) with the anomalous dimension of the pseudo-modulus given by

γ =
|FX |2γX + |Fφ2

|2γφ2

|FX |2 + |Fφ2
|2 =

γX + 2(y − 1)γφ2

2y − 1
, (4.9)
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Figure 1: A plot of ηmin(y) (bottom curve) and ηmax (top curve) vs. y−1 in the gauged SO(N = 6)

model. The window (4.12) is for η in the region between the two solid lines.

Here γX and γφ2
are the anomalous dimensions of those fields, given at one loop by

γ
(1)
X =

h2N

32π2
, γ

(1)
φ2

= −g2(N − 1)

8π2
, (4.10)

where the factor of N − 1 comes from the Casimir C2(r) = |G|T (r)/|r|. Using (4.10)

in (4.9), we thus obtain for the anomalous dimension of the pseudo-modulus γ = h2(N −
4η2(N − 1))/32π2(2y − 1). Using this in (1.3) agrees with (4.8).

So we see from (4.8) that as long as

η < ηmax =
1

2

√
N

N − 1
(4.11)

the potential curves up at infinity, so 〈X〉 cannot be too large. Our interest is in the window

where both (4.7) and (4.11) are satisfied,

ηmin(y) < η < ηmax. (4.12)

In this case, there is a SUSY-breaking, R-breaking vacuum at some finite 〈X〉 which

is not zero, and also not hierarchically large. A plot of ηmin(y) and ηmax vs. y−1 is shown

in figure 1, for N = 6. This figure also illustrates a general feature of ηmin(y) — it is a

monotonically increasing function of y−1.

Let us make a few comments on the window (4.12):

1. The window is non-empty, for all N and y > 1. One can verify this by, for instance,

checking that |X| is always tachyonic at the origin when η = ηmax.

2. The window is generally quite small. Figure 1 shows the typical values of ηmin ≈ 0.47

(the dependence on N is minimal), while according to (4.11), ηmax ≈ 0.5 − 0.6 for

largish N . So the window in η is typically a size of order ∆η ≈ 0.05−0.1. In addition,

for η close to ηmax, the existence of the minimum of the potential depends sensitively

on the large X behavior of the potential (4.8). This is suppressed not only by the
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loop-counting parameter h2, but also by ηmax − η < ∆η ≪ 1. Since the two-loop

correction to the potential will not be suppressed by this additional factor of ∆η, in

order for us to be able to trust the one-loop approximation, we need h (and hence g)

to be smaller than the naive perturbation expansion would suggest.

3. The existence of this window of spontaneous U(1)R breaking depends on the details

of the full Coleman-Weinberg potential, and not just its leading logarithm (4.8).

Correspondingly, the scale of U(1)R breaking 〈X〉 is not hierarchically large, but

rather is O(M) where M is some characteristic combination of the mass scales in the

superpotential.

4. Because the R-symmetry is spontaneously broken, the massless spectrum includes a

real scalar, the R-axion, in addition to the Goldstino and the SO(N −1) gauge fields.

The SO(N − 1) gauginos are massless at tree-level, but they will pick up a Majorana

mass term at one-loop. (One possibility that we have not checked in this example

is that the gaugino masses vanish to leading order in the SUSY breaking. This

happens in O’Raifeartaigh models without spontaneous gauge symmetry breaking,

as we discuss at the end of section 2.3.)

Finally, let us discuss what happens for η > ηmax. This regime corresponds to the

“inverted hierarchy” phase first studied by Witten in [18]. Here the 1-loop potential has

runaway at infinity, and there may or may not be a vacuum at exponentially large fields,

depending on the details of the renormalization group equations for g and h. While the

“inverted hierarchy” and its uses for model building are well-known (see e.g. [18 – 21]), the

uses of the non-hierarchical phase have been relatively unexplored (see however [22], and

the more recent work of [9, 14]). However, if the non-hierarchical phase always occurs in

a small window of couplings such as (4.12), then the usefulness of this phase for (natural)

model building might be limited.

4.1 Gauged SO(n) ⊂ SO(N) — tree-level vacuum alignment/mis-alignment

In this subsection, we will analyze the SO(N) model with a subgroup SO(n) ⊂ SO(N)

gauged. As we shall see, the model becomes much more complicated, so we will focus

mainly on a few qualitative physics points and be brief with the technical details.

Since we have broken the SO(N) global symmetry explicitly by gauging an SO(n)

subgroup, with SO(n) gauge coupling g 6= 0, we should consider the most general SO(n)×
SO(N − n) invariant superpotential of the form (1.1). This is given by:

W =
1

2
hXφ2

1 +
1

2
h̃Xφ̃2

1 + mφ2 · φ1 + m̃φ̃2 · φ̃1 + fX (4.13)

where φ1, φ2 (φ̃1, φ̃2) transform in the fundamental of SO(n) (SO(N −n)). Because SO(N)

is not a symmetry, we generally have h 6= h̃ and m 6= m̃ (taking them to be equal would

not be preserved by renormalization.). Because of the tree-level interactions, there is no

limit where SO(N) is restored, even as an accidental symmetry. So there is no issue of

dynamical vacuum alignment here. Whether the vacuum aligns to break, or not break,
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Figure 2: A phase diagram for the gauged SO(n) ⊂ SO(N) O’Raifeartaigh model.

the SO(n) gauge symmetry is determined entirely at tree-level, by the couplings in the

superpotential (4.13). Indeed, there are now three different phases depending on the ratios

y = |hf/m2| and ỹ = |h̃f/m̃2| (these are summarized in figure 2):

1. When y, ỹ < 1, the F and D-terms are minimized with

φi = φ̃i = 0, X arbitrary (4.14)

with V0 = f2. Since the gauge symmetry is unbroken, the one-loop Coleman-

Weinberg potential is independent of the gauge coupling, and so it reduces to an

obvious generalization of (2.19):

m2
X =

1

32π2

(
nh2m2f1(y) + (N − n)h̃2m̃2f1(ỹ)

)
(4.15)

So in this phase the R-symmetry remains unbroken.

2. ỹ > 1, y < ỹ. Now the scalar potential is minimized along

φi = 0, φ̃2 = − h̃X

m̃
φ̃1, φ̃2

1 = −|φ̃2
1| = −2f

h̃
(1− ỹ−1), X arbitrary (4.16)

Since φi = 0, the pseudo-moduli space preserves the full SO(n) gauge symmetry. So

this phase corresponds to tree-level vacuum alignment. Since the gauge symmetry

is again unbroken, the one-loop CW potential is independent of g. In fact, it is a

straightforward generalization of (2.22),

m2
X =

1

32π2

(
h2m2nf1(y/ỹ) + h̃2m̃2

[
2(N − n − 1)(log 4 − 1) + 4f2(ỹ)

])
(4.17)

and consequently, the R-symmetry remains unbroken.
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3. y > 1, ỹ < y:

φ̃i = 0, φ2 = −hX

m
φ1, φ2

1 = −|φ2
1| = −2f

h
(1−y−1), X arbitrary (4.18)

Since φ1 6= 0, the pseudo-moduli space spontaneously breaks the gauge symmetry

from SO(n) → SO(n − 1). So this phase corresponds to tree-level vacuum misalign-

ment. Now the one-loop potential depends on g, and its form is a generalization

of (4.4):

m2
X =

1

32π2

(
h2m2

[
2(n − 1)f3(η) + 4f2(y)

]
+ h̃2m̃2(N − n)f1(ỹ/y)

)
, (4.19)

The qualitative features of this potential are the same as for (4.4). In particular, there

will be a (possibly small) range of parameters where the R-breaking vacuum exists at

X ∼ O(M), where M is again some characteristic combination of the mass scales. In

addition, there will be an “inverted hierarchy” phase where X is exponentially larger

than M .
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